US009201849B2

a2 United States Patent (0) Patent No..  US 9,201,849 B2
Rao 45) Date of Patent: Dec. 1, 2015
(54) IMPLEMENTING MODIFIED QR 2012/0078988 Al*  3/2012 Miller .....ccoooovvvivinnnnc. 708/322
DECOMPOSITION IN HARDWARE 2014/0214910 A1* 7/2014 Rao .. 708/208
2014/0214911 Al* 7/2014 Rao 708/208
(71) Applicant: National Instruments Corporation,
Austin, TX (US) OTHER PUBLICATIONS
) Luethi et al.; “Gram-Schmidt-based QR Decomposition for MIMO
(72) Inventor: Yong Rao, Round Rock, TX (US) Detection: VLSI Implementation and Comparison;” IEEE Asia
. . . . Pacific Conference on Circuits and Systems, Nov. 30-Dec. 3, 2008,
(73) Assignee: izgg;a})l{natjrsu)ments Corporation, E-ISBN: 978-1-4244-2342-2; pp. §30-833.
? Ganchosov et al.; “FPGA Implementation of Modified Gram-
. . . . . Schmidt QR-Decomposition;” 3rd International Conference on High
(*) Notice: SubJeCt, to any dlSCIalmer’, the term of this Performance and Embedded Architectures and Compilers (HiPEAC)
%atselét llSSZXlzeILdeg;; dadJUSted under 35 Workshop on Reconfigurable Computing; Jan. 2009; pp. 41-51.
B (b) by ays. (Continued)
(21) Appl. No.: 13/865,357
(22) Tiled: Apr. 18, 2013 Primary Examiner — David H Malzahn
(74) Attorney, Agent, or Firm — Meyertons Hood Kivlin
(65) Prior Publication Data Kowert & Goetzel, P.C.; Jeffrey C. Hood; Mark S. Williams
US 2014/0214910 A1 Jul. 31, 2014
(57) ABSTRACT
Related U.S. Application Data
(60) Provisional application No. 61/758.357, filed on J System and method for computing QR matrix decomposition
rovisional application NO. »>-/, liled on Jan. and inverse matrix R™. A circuit is configured to implement
30, 2013. a QR decomposition of a matrix A into two matrices Q and R
51y Int. Cl using a Modified Gram Schmidt (MGS) process. The circuit
Gh Gn 0;5 F }7 10 (2006.01) includes a specified portion dedicated to computing matrix Q.
GOGF 17/16 200 6. 01 Matrix Q is computed via the specified portion based on first
( 0D) inputs using the MGS process, where the first inputs include
(52) US.CL the matrix A and possibly a scaling factor o. The identity
C.PC .............. s, GO6F 17/16 (2013.01) matrix may be scaled by the scaling factor o, thereby gener-
(58) Field of Classification Search ating scaled identity matrix ol. Scaled matrix oR™' (or
None ) unscaled R™') may be computed via the specified portion
See application file for complete search history. based on second inputs provided to the portion using the MGS
(56) Ref Cited process, where the second inputs include the (possibly scaled)
eferences Cite

U.S. PATENT DOCUMENTS

8,539,016 B1*
8,812,576 B1*

9/2013 Langhammer

8/2014 Mauer

2010/0138631 Al* 6/2010 Gangalakurti et al.

identity matrix. If scaled, the scaled matrix oR™! may be
unscaled, thereby computing matrix R™!. Matrix R~ is stored
and/or output.

24 Claims, 15 Drawing Sheets

Configured with program
instructions aecording o

embodiments of the invention
2

/
/

s

implement QR
decomposition
program in hardware
\
N Circuit

¥

83

Computer Syster:
82




US 9,201,849 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Huang, Zheng-Yu; Tsai, Pei-Yun; “High-Throughput QR Decompo-
sition for MIMO Detection in OFDM Systems;” Proceedings of
IEEE International Symposium on Circuits and Systems (ISCAS),

May 30-Jun. 2, 2010, E-ISBN: 978-1-4244-5309-2; pp. 1492-1495.
Singh et al.; “VLSI Architecture for Matrix Inversion using Modified
Gram-Schmidt based QR Decomposition;” Proceedings of the 20th
IEEE International Conference on VLSI Design, Jan. 6-20, 2007; pp.
836-841.

* cited by examiner



U.S. Patent Dec. 1, 2015 Sheet 1 of 15 US 9,201,849 B2

proj, a,
4y

Figure 1
{Prior Art)



US 9,201,849 B2

Sheet 2 of 15

Dec. 1, 2015

U.S. Patent

vZ einbi

28
weshAs sonduion

€8
HNOHD o N

A

aiempiey v wieiboid /
UOINSOdWIoosp =

MO wswsldwy e

LIQIIUOALS BU) JO SJURLUIDOGUUS
0] BuIpion0e SUOHONARUL
weboid yum pamnbyuorn



US 9,201,849 B2

Sheet 3 of 15

Dec. 1, 2015

U.S. Patent

gz 8inbi

08 28
WBSAS somndiuion wivishAg sendwosn

% .................... /

resereesy graes,
| ek cmmnd
0T
j\nmanmanngannnil
| s § st }
raeeoaass o

| messmanay senel

P8
I,
NVA INVT

/// .
// \
g \
NG s
UORUBAUS BY] JO SIUBUIDOGLID

01 BUIpIoaE SUCHINYSLY
wiiboud ypm panbuyuon

=
(,

:

T

l
o

|




US 9,201,849 B2

Sheet 4 of 15

Dec. 1, 2015

U.S. Patent

g Ve 8inbi-
JOL0D DOHOW A N
ges -

581 JopUn Jiun

AN vosinbae #
N abeuy

siosinbog
. epp-urbnd

Ny \&
/\/
N
QUBMYOS /Amm
poL ™
S

<5y
oMU N

— SRIBUILS L
PESBG-IaNGI0D

QQB\

HIOMEU

Jgpnduies



US 9,201,849 B2

Sheet 5 of 15

Dec. 1, 2015

U.S. Patent

HIOMpalU

00g .\

8/8M}jOS
pii

Jemndiios

sngpisid

.

MOy 2unssaid
ain

P

sse0/d

f JOII0D

<7 smngs

spseoy uspsinbie
gep-u)-Bmid

g¢ anbi

Buuonpipuoo
jBubis



U.S. Patent Dec. 1, 2015 Sheet 6 of 15 US 9,201,849 B2

Figure 4B

Plant
94

Figure 4A

Controffer
92

Do,
R

4




US 9,201,849 B2

Sheet 7 of 15

Dec. 1, 2015

U.S. Patent

g aunbi4
9Lt
BISSBY . ,
xa \ Zilsrgaigo \
& M _ I
get T 443 427 sy
SOIAB(T 961 e BALICT 084
SIGRINBILI0DBY XN Gicd5) et 08I
f 07T sng uoisuedsy f
agr
JEHOHICT
sng
; )
y 291 sng Jsoi \
¥ 7
_ _
ABHOAIO 09i
AdoLuep Nds
e %,
9gi ~&l
Asoiuepy
vy




U.S. Patent Dec. 1, 2015 Sheet 8 of 15 US 9,201,849 B2

provide a circuit, where the circuit is configured fo implement a OR
decomposition of a matrix A info two matrices () and R using a Modified Gram
Schmidt (MGS) provess, where Q represents an orfhonormal basis that spans a
column space of A, where R is a triangular matrix, and where the circuit includes
a specified set of hardware components dedicated to computing matrix O
602

!

provide a first set of inputs fo the circull, where the first
sef of inputs inciudes the matrix A and a scaling factor o
604

¥
compute matrix ( via the specified sef of hardware components dedicated fo
computing matiix Q, based on the first set of inputs using the MGS process
606

v
scale the identity malrix by the scaling factor g,
thereby generating scaled identity matrix ¢l
608

¥
provide a second sef of inpuls fo the specified sef of
hardware components dedicated to computing matrix Q,
where the second sef of inputs is different from the first set of inputs,
where the second set of inputs includes the scaled identity matrix
g10

¥

compute scaled malrix oR via the specified sel of
hardware componenis dedicated fo computing mairix Q,
hased on the secand set of inputs using the MGS process
612

¥
unscale the scaled matrix oR, thereby compuding matrix R,
where matrix R is the inverse of malrix R
614

Figure 6



US 9,201,849 B2

Sheet 9 of 15

Dec. 1, 2015

U.S. Patent

g/ aunbiH

£0/
.o Bugndwoos

0] pasn os)e
‘© Bunnoios
40§ spuBuodunD
BIBMPDICH

ndus puooes

Helo (1L

(L dold)
v/ e4nbi

GOL
,& Bugnduwios
A0 spusu0dung
BILMDIBH

£04
O Bugndwioo
40} SHEH0dUWIoD
2IBMDIRE

ndui pucoes

i 5l



US 9,201,849 B2

Sheet 10 of 15

Dec. 1, 2015

U.S. Patent

;208

g einbi4

[ o8 /808 /908 - #08
Ajduioing Adniop ) o
01IBA e JOIIBA e o0 pUR CALIED)
XLBER %0 XLEH O 0 Jen GO SOW

Y

q
y
0
o= 8jeos 0
/. Zi8

L0




US 9,201,849 B2

Sheet 11 of 15

Dec. 1, 2015

U.S. Patent

6 anbi4
/046 806 /906 P06 206
Ajc A
Jopop ferre Jopon e o puz |, o L o
XLUIEN AD XLEP LY/ 0 189 9] SOW g ¥
& @
A
2
bYe) spog | o T
- 216



U.S. Patent Dec. 1, 2015 Sheet 12 of 15 US 9,201,849 B2

2
D e
oot
o @
& 3
> \,‘
“«g .
&
D
Koo
F X @
» S
& ¥
7= D
i LL.
é
&
& ©
S
- e
oy N
Hd
T ®
[N
-3
T
‘Ts~~ .




US 9,201,849 B2

Sheet 13 of 15

Dec. 1, 2015

U.S. Patent

§11 2nbiy

no kmmsm ed

e nding

PFEAROREICEOEERN BRI A R A o e e e o

Asvonsverny

QN pescey gy poemooy gug  poosoces) T

TR

Vil einbi4

N e

HEITY . f:i._:a x.mm.al'mxm

R ]

. MO Y NYOH
-::::zoxbmqaxw.iwaorﬂuﬂu?a:io;:--,, ason ||

S rNEI RNl r XU IA PRI N6 DI ORI DAL bIN

igppeied

=

{asun) ewibs

ONNT NN II AN T LN A £ N LR S AN LAY T O RSN

St iR :
ALIIH3OE

OHI4A% IMN@_

9y e I e

Cﬁ 3\ itp 2\1:



US 9,201,849 B2

Sheet 14 of 15

Dec. 1, 2015

U.S. Patent

ne Jaeuied

gz 0inbi-

LEIS XL

i X 4 | m
Twumuv_*wq RCREERICII NN v.m-ww.uﬂﬁ* BICTCRIRIICICIS XX HOLI3N -~ A...MN‘. RIS HXLD3h EAXIIICS,
: 52 534 R ] —
1ROH ish o fiuord 1 B A
AGHLAN NOM LYY ARVAT L TR : [ 3"k ir]

—

{Bsuwiy} euwibss

, $ 2
sl V0 Fuewmd B BB ] gy
R due Pty
554 S oy | f Sreemceed
MO NAeU
pasodsues)
Ve L aunbi4
% epnj i - 0 ) Ip Tf tp Yy
Zh ‘N‘ J€h «m‘ Y] © % 0 5
-+ N 0 e \My

apn G ‘h it
b 4 b LA

of 0 A

Aomm .d« 43 4\



US 9,201,849 B2

Sheet 15 of 15

Dec. 1, 2015

U.S. Patent

g8 8inbi4

[E¥E)

i f i g =]
HEIR & 7 [y SV
) v 0 T gilaa Rvias iopeuizied
WHGH T oo >
f SEHIG g RO Y e
15 ] 4
«%wwa BT QLG
o LR ha Y 9 i) euh
HeJS Xyl DL 2Ty 22735 {(FSLULLY LIS
%4 3
HoRY 0153
K . s R ETH
\GH R H
i oS ndu
T 1§
321 Hgi ]
241 M auw m : H
0 Xupell Cibe 3 b o S8R :
i 43R e i pos
T344% 22

Vel

pasodsusi] H

N 90 e
M °0 e
o0 g

PP




US 9,201,849 B2

1

IMPLEMENTING MODIFIED QR
DECOMPOSITION IN HARDWARE

PRIORITY DATA

This application claims benefit of priority to U.S. Provi-
sional Application Ser. No. 61/758,357, titled “Implementing
Modified QR Decomposition in Hardware”, filed Jan. 30,
2013, whose inventor was Yong Rao, which is hereby incor-
porated by reference in its entirety as though fully and com-
pletely set forth herein.

FIELD OF THE INVENTION

The present invention relates to the field of hardware
design and implementation, and more particularly to hard-
ware implementation of QR decomposition of a matrix and
the corresponding inverse matrix R™".

DESCRIPTION OF THE RELATED ART

QR decomposition, also called QR factorization, is a ubig-
uitous linear algebra function that is fundamental to solving a
myriad of engineering and scientific problems, including
telecommunications and discrete modeling, among others,
and involves decomposition of a matrix A into a product of
two matrices, Q and R, where Q represents or specifies an
orthonormal basis that spans the column space of A, and
where R is a triangular matrix. Note that the fact that R is
triangular facilitates solution of systems of equations associ-
ated with the expression (matrix A)(vector x)-(vectorb), e.g.,
via back substitution, in that the single-term (bottom) row
(equation) may be used to solve the two-term (next-to-bot-
tom) row, and so forth.

The following illustrates QR decomposition for an PxN
matrix A, where P>=N, and in this particular case, equals 4,
where A=QR, and where terms a and g, are respective column
vectors of A and Q, with Q’s column vectors being mutually
orthonormal:

[do a1 @ d3]1=[Gy 41 G G51% M
Go*do Goxd1 Goxdy Go*ds

0 G, #d; g, %dy G *ds

0 0 Gt Gyeds

0 0 0 Gyeds

Note that as used herein, the superscripted asterisk symbol
“* indicates a Hermitian conjugate, i.e., the conjugate trans-
pose, of a matrix. One commonly used method for imple-
menting QR decomposition in hardware, e.g., on a field pro-
grammable gate array (FPGA), application specific
integrated circuit (ASIC), etc., is the Modified Gram Schmidt
(MGS) procedure (i.e., algorithm or technique), expressed

below in pseudo-code:

for i=0 to N-1

Ei
t; = [, iG]l = —
' [Eq]]
for j=i+1 to N-1

— X
;= Q0

15

20

35

40

45

50

60

65

2

-continued

- > —

a;=a;-1,q;
end

end

where, as noted above, a; and q, are respective column
vectors, and the superscripted asterisk symbol “*” indicates a
Hermitian conjugate (conjugate transpose).

FIG. 1 illustrates the first iteration of the above MGS pro-
cedure geometrically, where, for example, vector a,', which
refers to updated vector a, in the loop, is determined by pro-
jecting vector a, orthogonally onto the subspace generated or
represented by vectors q,, . . . , q,, and where vector a,' is
defined to be the difference between vector a, and its projec-
tion onto q,. This value is then utilized in the subsequent
iteration to determine the next value, and so forth.

In cases where precision can be traded off in order to
achieve higher throughputs, lower latencies, or lower power
consumption, fixed-point hardware implementation of the
QR decomposition may be desirable, and has been studied
extensively in the past. In prior art implementations, the use of
the R matrix, e.g., for solution of linear equations, has always
been an explicit and separate step from the computation of the
Q matrix, and is typically performed via back-substitution,
which means that additional hardware circuitry is dedicated
to this step, and may not be desirable when hardware
resources/area is of primary concern.

Graphical programming has become a powertul tool avail-
able to programmers. Graphical programming environments
such as the National Instruments LabVIEW product have
become very popular. Tools such as LabVIEW have greatly
increased the productivity of programmers, and increasing
numbers of programmers are using graphical programming
environments to develop their software applications. In par-
ticular, graphical programming tools are being used for test
and measurement, data acquisition, process control, man
machine interface (MMI), supervisory control and data
acquisition (SCADA) applications, modeling, simulation,
image processing/machine vision applications, and motion
control, among others.

SUMMARY OF THE INVENTION

Various embodiments of a system and method for imple-
menting QR decomposition and computing inverse matrix
R~! are presented below.

An interesting property of the Modified Gram-Schmidt
algorithm is exploited to derive the R™ matrix (inverse of
matrix R) using the same circuitry used to compute the Q
matrix, which allows reuse of the same hardware for both of
these operations, hence saving valuable hardware real estate.
The merits of this approach are demonstrated below through
various applications of the QR decomposition, including
solving for linear equations, and implementing a multi-input,
multi-output (MIMO) minimum mean square error (MMSE)
detector.

Accordingly, embodiments of a method for performing QR
decomposition and computing inverse matrix R~ are pre-
sented.

First, a circuit may be provided, where the circuit is con-
figured to implement a QR decomposition of a matrix A into
two matrices Q and R using a Modified Gram Schmidt (MGS)
process, where Q represents an orthonormal basis that spans
a column space of A, and where R is a triangular matrix. The
circuit may include a specified set of hardware components
dedicated to computing matrix Q. In other words, a specified



US 9,201,849 B2

3

portion of the circuit may be dedicated specifically to com-
putation of the matrix Q, i.e., a particular portion of the circuit
is devoted specifically to determining or computing the
matrix Q.

A first set of inputs may be provided to the circuit, where
the first set of inputs may include the matrix A and a scaling
factor 0. In other words, the matrix A and scaling factor o may
be received to or by the circuit. Note, however, that in some
embodiments, there may be no scaling, and so either no
scaling factor may be provided (or it may be setto 1). In some
embodiments, the first set of inputs may include additional
input data, e.g., the size of the matrix A, etc., as desired.

Matrix Q may be computed via the specified set of hard-
ware components (or circuit portion) dedicated to computing
matrix Q, based on the first set of inputs using the MGS
process. The computed matrix Q may be output and/or stored,
e.g., in a register or other memory of the circuit, or in a
memory external to the circuit, e.g., for subsequent use, as
described below. The identity matrix may be scaled by the
scaling factor o, thereby generating scaled identity matrix ol.
In embodiments without scaling, this method element may be
omitted.

A second set of inputs may be provided to the specified set
of hardware components dedicated to computing matrix Q,
where the second set of inputs is different from the first set of
inputs, and where the second set of inputs includes the scaled
identity matrix. In other words, the specified set of hardware
components (or circuit portion) dedicated to computing
matrix Q may receive the second set of inputs. Of course, in
embodiments without scaling, the identity matrix is not
scaled. In some embodiments, the identity matrix may have
been stored or even hard-wired in the circuit, and thus pro-
vided (possibly after scaling) to the specified set of hardware
components dedicated to computing matrix Q from inside the
circuit. In another embodiment, the identity matrix may be
provided to the circuit from an external source or memory. In
a further embodiment, the scaling may be performed by the
specified set of hardware components (or circuit portion)
dedicated to computing matrix Q, and so the specified set of
hardware components (or circuit portion) may receive the
unscaled identity matrix I as input, and scale it.

Scaled matrix oR~" may be computed via the specified set
of hardware components dedicated to computing matrix Q,
based on the second set of inputs using the MGS process, and
the scaled matrix oR™" may be unscaled, thereby computing
matrix R™!, where matrix R™! is the inverse of matrix R. Of
course, in embodiments without scaling, this method element
may be omitted. The matrix R™" may be output and/or stored,
e.g., in a register or other memory of the circuit, or in a
memory external to the circuit.

Thus, the portion of the circuit dedicated to computing
matrix Q may be repurposed to compute (possibly scaled)
matrix R™" simply by providing different input values or
parameters to the portion, thus, obviating additional circuitry
that would otherwise be required to compute the (possibly
scaled) matrix R™*, and thereby decreasing the footprint or
size, and corresponding circuit components, and thus cost.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained when the following detailed description of the pre-
ferred embodiment is considered in conjunction with the
following drawings, in which:

FIG. 1 geometrically illustrates one iteration of the Modi-
fied Gram Schmidt procedure, according to the prior art;

20

25

40

45

50

65

4

FIG. 2A illustrates a computer system configured to
execute a graphical program according to an embodiment of
the present invention;

FIG. 2B illustrates a network system comprising two or
more computer systems that may implement an embodiment
of the present invention;

FIG. 3A illustrates an instrumentation control system
according to one embodiment of the invention;

FIG. 3B illustrates an industrial automation system accord-
ing to one embodiment of the invention;

FIG. 4A is a high level block diagram of an exemplary
system which may execute or utilize graphical programs;

FIG. 4B illustrates an exemplary system which may per-
form control and/or simulation functions utilizing graphical
programs;

FIG. 5 is an exemplary block diagram of the computer
systems of FIGS. 1A, 1B, 2A and 2B and 3B;

FIG. 6 is a flowchart diagram illustrating one embodiment
of' a method for performing a QR decomposition and com-
puting inverse matrix R™*;

FIGS. 7A and 7B illustrate a benefit of dual purposing QR
decomposition circuitry to compute inverse matrix R™*;

FIG. 8 is a high level flowchart of a method for solving a
system of linear equations, according to one embodiment;

FIG. 9 is a high level flowchart of a method for estimating
a signal transmitting on a noisy channel, according to one
embodiment;

FIG. 10 illustrates normalization and orthogonalization
processes for an i” vector, according to one embodiment;

FIGS. 11 A and 11B respectively illustrate an Nx4 sequen-
tial (non-parallel) QR decomposition process and a corre-
sponding graphical program implementation, according to
one embodiment;

FIGS. 12A and 12B respectively illustrate an Nx4 semi-
parallel QR decomposition process and a corresponding
graphical program implementation, according to one
embodiment;

FIGS. 13A and 13B respectively illustrate an Nx4 full
parallel QR decomposition process and a corresponding
graphical program implementation, according to one
embodiment.

While the invention is susceptible to various modifications
and alternative forms, specific embodiments thereof are
shown by way of example in the drawings and are herein
described in detail. It should be understood, however, that the
drawings and detailed description thereto are not intended to
limit the invention to the particular form disclosed, but on the
contrary, the intention is to cover all modifications, equiva-
lents and alternatives falling within the spirit and scope of the
present invention as defined by the appended claims.

DETAILED DESCRIPTION OF THE INVENTION

Incorporation by Reference:

The following references are hereby incorporated by ref-
erence in their entirety as though fully and completely set
forth herein:

U.S. Provisional Application Ser. No. 61/758,357, titled
“Implementing Modified QR Decomposition in Hardware”,
filed Jan. 30, 2013, whose inventor was Yong Rao.

Rao, Yong; Wong, lan; “A Novel Architecture for QR
Decomposition” by Yong Rao and Ian Wong, of National
Instruments Corporation.

U.S. Pat. No. 4,914,568 titled “Graphical System for Mod-
eling a Process and Associated Method,” issued on Apr. 3,
1990.



US 9,201,849 B2

5

U.S. Pat. No. 5,481,741 titled “Method and Apparatus for
Providing Attribute Nodes in a Graphical Data Flow Environ-
ment”.

U.S. Pat. No. 6,173,438 titled “Embedded Graphical Pro-
gramming System” filed Aug. 18, 1997.

U.S. Pat. No. 6,219,628 titled “System and Method for
Configuring an Instrument to Perform Measurement Func-
tions Utilizing Conversion of Graphical Programs into Hard-
ware Implementations,” filed Aug. 18, 1997.

U.S. Pat. No. 7,210,117 titled “System and Method for
Programmatically Generating a Graphical Program in
Response to Program Information,” filed Dec. 20, 2000.
Terms

The following is a glossary of terms used in the present
application:

Memory Medium—Any of various types of memory
devices or storage devices. The term “memory medium” is
intended to include an installation medium, e.g., a CD-ROM,
floppy disks 104, or tape device; a computer system memory
or random access memory such as DRAM, DDR RAM,
SRAM, EDO RAM, Rambus RAM, etc.; a non-volatile
memory such as a Flash, magnetic media, e.g., a hard drive, or
optical storage; registers, or other similar types of memory
elements, etc. The memory medium may comprise other
types of memory as well or combinations thereof. In addition,
the memory medium may be located in a first computer in
which the programs are executed, or may be located in a
second different computer which connects to the first com-
puter over a network, such as the Internet. In the latter
instance, the second computer may provide program instruc-
tions to the first computer for execution. The term “memory
medium” may include two or more memory mediums which
may reside in different locations, e.g., in different computers
that are connected over a network.

Carrier Medium—a memory medium as described above,
as well as a physical transmission medium, such as a bus,
network, and/or other physical transmission medium that
conveys signals such as electrical, electromagnetic, or digital
signals.

Programmable Hardware Element—includes various
hardware devices comprising multiple programmable func-
tion blocks connected via a programmable interconnect.
Examples include FPGAs (Field Programmable Gate
Arrays), PLDs (Programmable Logic Devices), FPOAs
(Field Programmable Object Arrays), and CPLDs (Complex
PLDs). The programmable function blocks may range from
fine grained (combinatorial logic or look up tables) to coarse
grained (arithmetic logic units or processor cores). A pro-
grammable hardware element may also be referred to as
“reconfigurable logic”.

Software Program—the term “software program” is
intended to have the full breadth of its ordinary meaning, and
includes any type of program instructions, code, script and/or
data, or combinations thereof, that may be stored in a memory
medium and executed by a processor. Exemplary software
programs include programs written in text-based program-
ming languages, such as C, C++, PASCAL, FORTRAN,
COBOL, JAVA, assembly language, etc.; graphical programs
(programs written in graphical programming languages);
assembly language programs; programs that have been com-
piled to machine language; scripts; and other types of execut-
able software. A software program may comprise two or more
software programs that interoperate in some manner. Note
that various embodiments described herein may be imple-
mented by a computer or software program. A software pro-
gram may be stored as program instructions on a memory
medium.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

Hardware Configuration Program—a program, e.g., a
netlist or bit file, that can be used to program or configure a
programmable hardware element.

Program—the term “program” is intended to have the full
breadth of its ordinary meaning. The term “program”
includes 1) a software program which may be stored in a
memory and is executable by a processor or 2) a hardware
configuration program useable for configuring a program-
mable hardware element.

Graphical Program—A program comprising a plurality of
interconnected nodes or icons, wherein the plurality of inter-
connected nodes or icons visually indicate functionality of
the program. The interconnected nodes or icons are graphical
source code for the program. Graphical function nodes may
also be referred to as blocks.

The following provides examples of various aspects of
graphical programs. The following examples and discussion
are not intended to limit the above definition of graphical
program, but rather provide examples of what the term
“graphical program” encompasses:

The nodes in a graphical program may be connected in one
or more of a data flow, control flow, and/or execution flow
format. The nodes may also be connected in a “signal flow”
format, which is a subset of data flow.

Exemplary graphical program development environments
which may be used to create graphical programs include
LabVIEW®, DasylLab™, DiaDem™ and Matrixx/System-
Build™ from National Instruments, Simulink® from the
MathWorks, VEE™ from Agilent, WiT™ from Coreco,
Vision Program Manager™ from PPT Vision, Soft WIRE™
from Measurement Computing, Sanscript™ from North-
woods Software, Khoros™ from Khoral Research, SnapMas-
ter™ from HEM Data, VisSim™ from Visual Solutions,
ObjectBench™ by SES (Scientific and Engineering Soft-
ware), and VisiDAQ™ from Advantech, among others.

The term “graphical program” includes models or block
diagrams created in graphical modeling environments,
wherein the model or block diagram comprises intercon-
nected blocks (i.e., nodes) or icons that visually indicate
operation of the model or block diagram; exemplary graphi-
cal modeling environments include Simulink®, System-
Build™, VisSim™, Hypersignal Block Diagram™, etc.

A graphical program may be represented in the memory of
the computer system as data structures and/or program
instructions. The graphical program, e.g., these data struc-
tures and/or program instructions, may be compiled or inter-
preted to produce machine language that accomplishes the
desired method or process as shown in the graphical program.

Input datato a graphical program may be received from any
of various sources, such as from a device, unit under test, a
process being measured or controlled, another computer pro-
gram, a database, or from a file. Also, a user may input data to
a graphical program or virtual instrument using a graphical
user interface, e.g., a front panel.

A graphical program may optionally have a GUI associated
with the graphical program. In this case, the plurality of
interconnected blocks or nodes are often referred to as the
block diagram portion of the graphical program.

Node—In the context of a graphical program, an element
that may be included in a graphical program. The graphical
program nodes (or simply nodes) in a graphical program may
also be referred to as blocks. A node may have an associated
icon that represents the node in the graphical program, as well
as underlying code and/or data that implements functionality
of the node. Exemplary nodes (or blocks) include function



US 9,201,849 B2

7

nodes, sub-program nodes, terminal nodes, structure nodes,
etc. Nodes may be connected together in a graphical program
by connection icons or wires.

Data Flow Program—A Software Program in which the
program architecture is that of a directed graph specifying the
flow of data through the program, and thus functions execute
whenever the necessary input data are available. Data flow
programs can be contrasted with procedural programs, which
specify an execution flow of computations to be performed.
As used herein “data flow” or “data flow programs” refer to
“dynamically-scheduled data flow” and/or “statically-de-
fined data flow™.

Graphical Data Flow Program (or Graphical Data Flow
Diagram)—A Graphical Program which is also a Data Flow
Program. A Graphical Data Flow Program comprises a plu-
rality of interconnected nodes (blocks), wherein at least a
subset of the connections among the nodes visually indicate
that data produced by one node is used by another node. A
LabVIEW VI is one example of a graphical data flow pro-
gram. A Simulink block diagram is another example of a
graphical data flow program.

Graphical User Interface—this term is intended to have the
full breadth of its ordinary meaning. The term “Graphical
User Interface” is often abbreviated to “GUI”. A GUI may
comprise only one or more input GUI elements, only one or
more output GUI elements, or both input and output GUI
elements.

The following provides examples of various aspects of
GUIs. The following examples and discussion are not
intended to limit the ordinary meaning of GUI, but rather
provide examples of what the term “graphical user interface”
encompasses:

A GUI may comprise a single window having one or more
GUI Elements, or may comprise a plurality of individual GUI
Elements (or individual windows each having one or more
GUI Elements), wherein the individual GUI Elements or
windows may optionally be tiled together.

A GUI may be associated with a graphical program. In this
instance, various mechanisms may be used to connect GUI
Elements in the GUI with nodes in the graphical program. For
example, when Input Controls and Output Indicators are cre-
ated in the GUI, corresponding nodes (e.g., terminals) may be
automatically created in the graphical program or block dia-
gram. Alternatively, the user can place terminal nodes in the
block diagram which may cause the display of corresponding
GUI Elements front panel objects in the GUI, either at edit
time or later at run time. As another example, the GUI may
comprise GUI Elements embedded in the block diagram por-
tion of the graphical program.

Front Panel—A Graphical User Interface that includes
input controls and output indicators, and which enables a user
to interactively control or manipulate the input being pro-
vided to a program, and view output of the program, while the
program is executing.

A front panel is a type of GUIL. A front panel may be
associated with a graphical program as described above.

In an instrumentation application, the front panel can be
analogized to the front panel of an instrument. In an industrial
automation application the front panel can be analogized to
the MMI (Man Machine Interface) of a device. The user may
adjust the controls on the front panel to affect the input and
view the output on the respective indicators.

Graphical User Interface Element—an element of a
graphical user interface, such as for providing input or dis-
playing output. Exemplary graphical user interface elements
comprise input controls and output indicators.

25

30

40

45

50

55

8

Input Control—a graphical user interface element for pro-
viding user input to a program. An input control displays the
value input by the user and is capable of being manipulated at
the discretion of the user. Exemplary input controls comprise
dials, knobs, sliders, input text boxes, etc.

Output Indicator—a graphical user interface element for
displaying output from a program. Exemplary output indica-
tors include charts, graphs, gauges, output text boxes,
numeric displays, etc. An output indicator is sometimes
referred to as an “output control”.

Computer System—any of various types of computing or
processing systems, including a personal computer system
(PC), mainframe computer system, workstation, network
appliance, Internet appliance, personal digital assistant
(PDA), television system, grid computing system, or other
device or combinations of devices. In general, the term “com-
puter system” can be broadly defined to encompass any
device (or combination of devices) having at least one pro-
cessor that executes instructions from a memory medium.

Measurement Device—includes instruments, data acqui-
sition devices, smart sensors, and any of various types of
devices that are configured to acquire and/or store data. A
measurement device may also optionally be further config-
ured to analyze or process the acquired or stored data.
Examples of a measurement device include an instrument,
such as a traditional stand-alone “box” instrument, a com-
puter-based instrument (instrument on a card) or external
instrument, a data acquisition card, a device external to a
computer that operates similarly to a data acquisition card, a
smart sensor, one or more DAQ or measurement cards or
modules in a chassis, an image acquisition device, such as an
image acquisition (or machine vision) card (also called a
video capture board) or smart camera, a motion control
device, a robot having machine vision, and other similar types
of devices. Exemplary “stand-alone” instruments include
oscilloscopes, multimeters, signal analyzers, arbitrary wave-
form generators, spectroscopes, and similar measurement,
test, or automation instruments.

A measurement device may be further configured to per-
form control functions, e.g., in response to analysis of the
acquired or stored data. For example, the measurement device
may send a control signal to an external system, such as a
motion control system or to a sensor, in response to particular
data. A measurement device may also be configured to per-
form automation functions, i.e., may receive and analyze
data, and issue automation control signals in response.

Functional Unit (or Processing Element)—refers to vari-
ous elements or combinations of elements. Processing ele-
ments include, for example, circuits such as an ASIC (Appli-
cation Specific Integrated Circuit), portions or circuits of
individual processor cores, entire processor cores, individual
processors, programmable hardware devices such as a field
programmable gate array (FPGA), and/or larger portions of
systems that include multiple processors, as well as any com-
binations thereof.

Automatically—refers to an action or operation performed
by a computer system (e.g., software executed by the com-
puter system) or device (e.g., circuitry, programmable hard-
ware elements, ASICs, etc.), without user input directly
specifying or performing the action or operation. Thus the
term “automatically” is in contrast to an operation being
manually performed or specified by the user, where the user
provides input to directly perform the operation. An auto-
matic procedure may be initiated by input provided by the
user, but the subsequent actions that are performed “automati-
cally” are not specified by the user, i.e., are not performed
“manually”, where the user specifies each action to perform.



US 9,201,849 B2

9

For example, a user filling out an electronic form by selecting
each field and providing input specitying information (e.g.,
by typing information, selecting check boxes, radio selec-
tions, etc.) is filling out the form manually, even though the
computer system must update the form in response to the user
actions. The form may be automatically filled out by the
computer system where the computer system (e.g., software
executing on the computer system) analyzes the fields of the
form and fills in the form without any user input specifying
the answers to the fields. As indicated above, the user may
invoke the automatic filling of the form, but is not involved in
the actual filling of the form (e.g., the user is not manually
specifying answers to fields but rather they are being auto-
matically completed). The present specification provides
various examples of operations being automatically per-
formed in response to actions the user has taken.

FIG. 2A—Computer System

FIG. 2A illustrates a computer system 82 configured to
implement embodiments of the techniques disclosed herein.
For example, the computer system 82 may be configured to
specify a program, e.g., a graphical program, which is con-
figured to implement QR decomposition and to determine
R~ or other industrially useful computations via the same
program code. The program may be used to configure a cir-
cuit, such as an ASIC or programmable hardware element,
e.g., an FPGA. Embodiments of a method for specitying and
implementing QR decomposition and other computations in a
hardware efficient manner are described below.

As shown in FIG. 2A, the computer system 82 may include
a display device configured to display the program as the
program is created and/or executed. The display device may
also be configured to display a graphical user interface or
front panel of the program during execution of the program.
The graphical user interface may comprise any type of
graphical user interface, e.g., depending on the computing
platform.

The computer system 82 may include at least one memory
medium on which one or more computer programs or soft-
ware components according to one embodiment of the
present invention may be stored. For example, the memory
medium may store one or more textual or graphical programs
which are executable to implement or perform the methods
described herein. For example, the memory medium may
store a program, e.g., a graphical program, that specifies QR
decomposition and computation of inverse matrix R~ and
may compile the program for implementation on a circuit 83,
e.g., for deployment to a programmable hardware element or
for implementation on an ASIC. Additionally, the memory
medium may store a graphical programming development
environment application used to create and/or execute such
graphical programs, e.g., the LabVIEW™ graphical program
development environment, provided by National Instruments
Corporation. The memory medium may also store operating
system software, as well as other software for operation of the
computer system. Various embodiments further include
receiving or storing instructions and/or data implemented in
accordance with the foregoing description upon a carrier
medium.

As shown, computer system 82 may output
FIG. 2B—Computer Network

FIG. 2B illustrates a system including a first computer
system 82 that is coupled to a second computer system 90.
The computer system 82 may be coupled via a network 84 (or
a computer bus) to the second computer system 90. The
computer systems 82 and 90 may each be any of various
types, as desired. The network 84 can also be any of various
types, including a LAN (local area network), WAN (wide area

10

15

20

25

30

35

40

45

50

55

60

65

10

network), the Internet, or an Intranet, among others. The
computer systems 82 and 90 may execute a program, e.g., a
graphical program, in a distributed fashion. For example, in a
graphical program embodiment, computer 82 may execute a
first portion of the block diagram of a graphical program and
computer system 90 may execute a second portion of the
block diagram of the graphical program. As another example,
computer 82 may display the graphical user interface of a
graphical program and computer system 90 may execute the
block diagram of the graphical program.

In one embodiment, the graphical user interface of the
graphical program may be displayed on a display device of
the computer system 82, and the block diagram may execute
on a device coupled to the computer system 82. The device
may include a programmable hardware element. In one
embodiment, the graphical program may be deployed to and
executed on the device. For example, an application develop-
ment environment with which the graphical program is asso-
ciated may provide support for compiling a graphical pro-
gram implementing QR decomposition and computation of
R~ as disclosed herein for deployment/implementation on
the device.

Exemplary Systems

Embodiments of the present invention may be involved
with performing test and/or measurement functions; control-
ling and/or modeling instrumentation or industrial automa-
tion hardware; modeling and simulation functions, e.g., mod-
eling or simulating a device or product being developed or
tested, etc. Exemplary test applications where the techniques
disclosed herein may be used include hardware-in-the-loop
testing and rapid control prototyping, among others.

However, it is noted that embodiments of the present inven-
tion can be used for a plethora of applications and is not
limited to the above applications. In other words, applications
discussed in the present description are exemplary only, and
embodiments of the present invention may be used in any of
various types of systems. Thus, embodiments of the system
and method of the present invention is configured to be used
in any of various types of applications, including the control
of other types of devices such as multimedia devices, video
devices, audio devices, telephony devices, Internet devices,
etc., as well as general purpose software applications such as
word processing, spreadsheets, network control, network
monitoring, financial applications, games, etc.

FIG. 3A illustrates an exemplary instrumentation control
system 100 which may implement embodiments of the inven-
tion. The system 100 comprises a host computer 82 which
couples to one or more instruments. The host computer 82
may comprise a CPU, a display screen, memory, and one or
more input devices such as a mouse or keyboard as shown.
The computer 82 may operate with the one or more instru-
ments to analyze, measure or control a unit under test (UUT)
or process 150, e.g., via execution of software 104.

The one or more instruments may include a GPIB instru-
ment 112 and associated GPIB interface card 122, a data
acquisition board 114 inserted into or otherwise coupled with
chassis 124 with associated signal conditioning circuitry 126,
a VXI instrument 116, a PXI instrument 118, a video device
or camera 132 and associated image acquisition (or machine
vision) card 134, a motion control device 136 and associated
motion control interface card 138, and/or one or more com-
puter based instrument cards 142, among other types of
devices. The computer system may couple to and operate with
one or more of these instruments. The instruments may be
coupledto theunitundertest (UUT) or process 150, or may be
coupled to receive field signals, typically generated by trans-
ducers. The system 100 may be used in a data acquisition and



US 9,201,849 B2

11

control application, in a test and measurement application, an
image processing or machine vision application, a process
control application, a man-machine interface application, a
simulation application, or a hardware-in-the-loop validation
application, among others.

FIG. 3B illustrates an exemplary industrial automation
system 200 which may implement embodiments of the inven-
tion. The industrial automation system 200 is similar to the
instrumentation or test and measurement system 100 shown
in FIG. 3A. Elements which are similar or identical to ele-
ments in FIG. 3A have the same reference numerals for con-
venience. The system 200 may comprise a computer 82
which couples to one or more devices or instruments. The
computer 82 may comprise a CPU, a display screen, memory,
and one or more input devices such as a mouse or keyboard as
shown. The computer 82 may operate with the one or more
devices to perform an automation function with respect to a
process or device 150, such as MMI (Man Machine Inter-
face), SCADA (Supervisory Control and Data Acquisition),
portable or distributed data acquisition, process control,
advanced analysis, or other control, among others, e.g., via
execution of software 104.

The one or more devices may include a data acquisition
board 114 inserted into or otherwise coupled with chassis 124
with associated signal conditioning circuitry 126, a PXI
instrument 118, a video device 132 and associated image
acquisition card 134, a motion control device 136 and asso-
ciated motion control interface card 138, a fieldbus device
270 and associated fieldbus interface card 172, a PL.C (Pro-
grammable Logic Controller) 176, a serial instrument 282
and associated serial interface card 184, or a distributed data
acquisition system, such as the Fieldpoint system available
from National Instruments, among other types of devices.

FIG. 4A is a high level block diagram of an exemplary
system which may execute or utilize graphical programs.
FIG. 4A illustrates a general high-level block diagram of a
generic control and/or simulation system which comprises a
controller 92 and a plant 94. The controller 92 represents a
control system/algorithm the user may be trying to develop.
The plant 94 represents the system the user may be trying to
control. For example, if the user is designing an ECU fora car,
the controller 92 is the ECU and the plant 94 is the car’s
engine (and possibly other components such as transmission,
brakes, and so on.) As shown, a user may create a graphical
program that specifies or implements the functionality of one
or both of the controller 92 and the plant 94. For example, a
control engineer may use a modeling and simulation tool to
create a model (graphical program) of the plant 94 and/or to
create the algorithm (graphical program) for the controller 92.

FIG. 4B illustrates an exemplary system which may per-
form control and/or simulation functions. As shown, the con-
troller 92 may be implemented by a computer system 82 or
other device (e.g., including a processor and memory medium
and/or including a programmable hardware element) that
executes or implements a graphical program. In a similar
manner, the plant 94 may be implemented by a computer
system or other device 144 (e.g., including a processor and
memory medium and/or including a programmable hardware
element) that executes or implements a graphical program, or
may beimplemented in or as a real physical system, e.g., a car
engine.

In one embodiment of the invention, one or more graphical
programs may be created which are used in performing rapid
control prototyping. Rapid Control Prototyping (RCP) gen-
erally refers to the process by which a user develops a control
algorithm and quickly executes that algorithm on a target
controller connected to a real system. The user may develop

10

15

20

25

30

35

40

45

50

55

60

65

12

the control algorithm using a graphical program, and the
graphical program may execute on the controller 92, e.g., on
a computer system or other device. The computer system 82
may be a platform that supports real time execution, e.g., a
device including a processor that executes a real time operat-
ing system (RTOS), or a device including a programmable
hardware element.

In one embodiment of the invention, one or more graphical
programs may be created which are used in performing Hard-
ware in the Loop (HIL) simulation. Hardware in the Loop
(HIL) refers to the execution of the plant model 94 in real time
to test operation of a real controller 92. For example, once the
controller 92 has been designed, it may be expensive and
complicated to actually test the controller 92 thoroughly in a
real plant, e.g., areal car. Thus, the plant model (implemented
by a graphical program) is executed in real time to make the
real controller 92 “believe” or operate as if it is connected to
a real plant, e.g., a real engine.

In the embodiments of FIGS. 2A, 2B, and 3B above, one or
more of the various devices may couple to each other over a
network, such as the Internet. In one embodiment, the user
operates to select a target device from a plurality of possible
target devices for programming or configuration using a
graphical program. Thus the user may create a graphical
program on a computer and use (execute) the graphical pro-
gram on that computer or deploy the graphical program to a
target device (for remote execution on the target device) that
is remotely located from the computer and coupled to the
computer through a network.

Graphical software programs which perform data acquisi-
tion, analysis and/or presentation, e.g., for measurement,
instrumentation control, industrial automation, modeling, or
simulation, such as in the applications shown in FIGS. 2A and
2B, may be referred to as virtual instruments.

MGS Procedure

An interesting property of the MGS procedure can be
observed via the following matrix operations, again, usinga P
by 4 (Px4) matrix as an example. Omitting norm and inner
product calculations, the MGS procedure can be broken down
into the following four steps:

1 2
— 000 1 —ror =ro2 —ros @
o0 01 0 0
MGso=| 0 1 0 0]x 0 o ) 0
0 010
0 001 0 0 0 1
1 0 00 Lo o 0 (3)
1
— 00 01 —rp -r3
MGS1 = Fi1 X 0o 1 0
0 0 120
00 01 00 0 1
10 0 0 Loo o 4
01 0 0 010 0
MGS2 = 1 X
0 — 0 00 1 —-rs
2
00 0 1 000 1
10 0 L1000 (5)
MGS3 01 0 0100
=00t (1) “loo1o
000 — 0001
733




US 9,201,849 B2

13

Where r,; is the (i, j) element of the R matrix.

Noting the MGS is a feed forward process, elements of the
R matrix may be calculated just before each MGS procedure
is performed. Each MGS step may include two matrix trans-
formations; the first being for vector normalization, and the
second for orthogonalization. In a matrix form, the Q matrix
can be represented and determined as:

O=AxMGSOxMGS1xMGS2xMGS3 (6)

Interestingly, if the MGS procedure is applied to matrix R,
it can be easily verified that:

RxMGSOxMGS1xMGS2xMGS3=/ @)

where [ is the identity matrix.
Thus,

MGS0xMGS1xMGS2xMGS3=R"! ®)

Thus, the MGS procedure also coincides with the back
substitution process to determine R~ from the upper triangu-
lar matrix R. Accordingly, regarding a hardware implemen-
tation, e.g., on an FPGA or ASIC, one can utilize the same
circuit which generates the Q matrix to generate R™*, simply
by “piggy backing” an identity matrix following matrix A. In
other words, the circuit used to determine the matrix Q can be
repurposed to compute the matrix R™!, which is useful to
perform any of various other industrially useful operations or
computations, e.g., for solving for pseudo inverse matrices,
solving systems of unified linear equations, determining sig-
nal estimates with minimum mean square error, and so forth,
among others. Note that while the present techniques are
implemented using the Modified Gram Schmidt procedure,
the techniques disclosed herein are also applicable to other
QR decomposition schemes, e.g., the (unmodified) Gram
Schmidt procedure.

FIG. 5—Computer System Block Diagram

FIG. 5 is a block diagram representing one embodiment of
the computer system 82 and/or 90 illustrated in FIGS. 1A and
1B, or computer system 82 shown in FIG. 2A or 2B. Itis noted
that any type of computer system configuration or architec-
ture can be used as desired, and FIG. 5 illustrates a represen-
tative PC embodiment. It is also noted that the computer
system may be a general purpose computer system, a com-
puter implemented on a card installed in a chassis, or other
types of embodiments. Elements of a computer not necessary
to understand the present description have been omitted for
simplicity.

The computer may include at least one central processing
unit or CPU (processor) 160 which is coupled to a processor
or host bus 162. The CPU 160 may be any of various types,
including an x86 processor, e.g., a Pentium class, a PowerPC
processor, a CPU from the SPARC family of RISC proces-
sors, as well as others. A memory medium, typically com-
prising RAM and referred to as main memory, 166 is coupled
to the host bus 162 by means of memory controller 164. The
main memory 166 may store the graphical program (or other
type of program) configured to specify QR decomposition
and computation of inverse matrix R~ per the techniques
disclosed herein. The main memory may also store operating
system software, as well as other software for operation of the
computer system.

The host bus 162 may be coupled to an expansion or
input/output bus 170 by means of a bus controller 168 or bus
bridge logic. The expansion bus 170 may be the PCI (Periph-
eral Component Interconnect) expansion bus, although other
bus types can be used. The expansion bus 170 includes slots
for various devices such as described above. The computer 82
further comprises a video display subsystem 180 and hard

10

15

20

25

30

35

40

45

50

55

60

65

14

drive 182 coupled to the expansion bus 170. The computer 82
may also comprise a GPIB card 122 coupled to a GPIB bus
112, and/or an MXI device 186 coupled to a VXI chassis 116.

As shown, a device 190 may also be connected to the
computer. The device 190 may include a processor and
memory which may execute a real time operating system. The
device 190 may also or instead comprise a programmable
hardware element. The computer system may be configured
to deploy a graphical program to the device 190 for execution
of the graphical program on the device 190. The deployed
graphical program may take the form of graphical program
instructions or data structures that directly represents the
graphical program. Alternatively, the deployed graphical pro-
gram may take the form of text code (e.g., C code) generated
from the graphical program. As another example, the
deployed graphical program may take the form of compiled
code generated from either the graphical program or from text
code that in turn was generated from the graphical program.
The compiled code may be further converted for implemen-
tation in hardware via any of various tools, e.g., to a netlist or
other hardware configuration program, as desired.

FIG. 6—Method for Performing QR Decomposition and
Computation of Inverse Matrix R~!

FIG. 6 is a high level flowchart of a method for performing
QR decomposition and computing inverse matrix R,
according to one embodiment. The method shown in FIG. 6
may be used in conjunction with any of the computer systems
or devices shown in the above Figures, among other devices.
In various embodiments, some of the method elements shown
may be performed concurrently, in a different order than
shown, or may be omitted. Additional method elements may
also be performed as desired. As shown, this method may
operate as follows.

First, in 602, a circuit may be provided, where the circuit is
configured to implement a QR decomposition of a matrix A
into two matrices Q and R using a Modified Gram Schmidt
(MGS) process, where Q represents an orthonormal basis that
spans a column space of A, and where R is a triangular matrix.
The circuit may include a specified set of hardware compo-
nents dedicated to computing matrix Q. In other words, a
specified portion of the circuit may be dedicated specifically
to computation of the matrix Q, i.e., a particular portion of the
circuit is devoted specifically to determining or computing
the matrix Q.

In 604, a first set of inputs may be provided to the circuit,
where the first set of inputs may include the matrix A and a
scaling factor o. In other words, the matrix A and scaling
factor o may be received to or by the circuit. Note, however,
that in some embodiments, there may be no scaling, and so
either no scaling factor may be provided (or it may be setto 1).
In some embodiments, the first set of inputs may include
additional input data, e.g., the size of the matrix A, etc., as
desired.

In 606, matrix Q may be computed via the specified set of
hardware components (or circuit portion) dedicated to com-
puting matrix Q, based on the first set of inputs using the MGS
process. The computed matrix Q may be output and/or stored,
e.g., in a register or other memory of the circuit, or in a
memory external to the circuit, e.g., for subsequent use, as
described below.

In 608, the identity matrix may be scaled by the scaling
factor o, thereby generating scaled identity matrix ol. In
embodiments without scaling, this method element may be
omitted.

In 610, a second set of inputs may be provided to the
specified set of hardware components dedicated to computing
matrix Q, where the second set of inputs is different from the



US 9,201,849 B2

15

first set of inputs, and where the second set of inputs includes
the scaled identity matrix. In other words, the specified set of
hardware components (or circuit portion) dedicated to com-
puting matrix Q may receive the second set of inputs. Of
course, in embodiments without scaling, the identity matrix is
not scaled. In some embodiments, the identity matrix may
have been stored or even hard-wired in the circuit, and thus
provided (possibly after scaling) to the specified set of hard-
ware components dedicated to computing matrix Q from
inside the circuit. In another embodiment, the identity matrix
may be provided to the circuit from an external source or
memory. In a further embodiment, the scaling of 608 may be
performed by the specified set of hardware components (or
circuit portion) dedicated to computing matrix Q, and so the
specified set of hardware components (or circuit portion) may
receive the unscaled identity matrix I as input, and scale it.

In 612, scaled matrix oR~! may be computed via the speci-
fied set of hardware components dedicated to computing
matrix Q, based on the second set of inputs using the MGS
process.

In 614, the scaled matrix cR™! may be unscaled, thereby
computing matrix R™, where matrix R™! is the inverse of
matrix R. Of course, in embodiments without scaling, this
method element may be omitted. The matrix R~ may be
output and/or stored, e.g., in a register or other memory of the
circuit, or in a memory external to the circuit.

Thus, the portion of the circuit dedicated to computing
matrix Q may be repurposed to compute (possibly scaled)
matrix R™" simply by providing different input values or
parameters to the portion, thus, obviating additional circuitry
that would otherwise be required to compute the (possibly
scaled) matrix R™!, and thereby decreasing the footprint or
size, and corresponding circuit components, and thus cost.

FIGS. 7A and 7B illustrate such savings according to one
exemplary embodiment, where FIG. 7A shows a prior art
implementation with respective circuitry for computing
matrix Q (703) and matrix R™! (705), and where FIG. 7B
shows an exemplary implementation of a circuit according to
an embodiment of the present techniques, where the circuit
portion 703 is used for both computations, per the above, and
thus, circuit portion 705 is omitted. These benefits may be
especially valuable in products such as smartphones, tablet
computers, etc., where minimization of cost and size is par-
ticularly important.

Exemplary Applications

As noted above, the computed inverse matrix R™* may be
used for a wide variety of further computations or function-
alities that are technologically or industrially valuable. For
example, in one embodiment, the circuit may be further con-
figured to compute matrix A~ based on the matrix R and the
matrix Q. Accordingly, the method may further include com-
puting, via the circuit, matrix A~* based on the matrix R! and
the matrix Q. Such matrix inversion is broadly useful in
industrial or technological applications, e.g., products and
processes.

As another example application of the above techniques,
the circuit may be further configured to solve a system of
linear equations specified by the expression Ax=b, wherein x
and b are respective vectors, and so the method may further
include solving, via the circuit, the system of linear equations
specified by the expression Ax=b to determine X, based on
matrix R, the matrix Q, and vector b, and wherex is a vector.
An exemplary flowchart of this process is shown in FIG. 8,
where, as may be seen, in 802 matrix A and a scaling factor o
may be provided as input, an extended matrix may be gener-
ated by scaling an identity matrix with the scaling factor oto
produce extended identity matrix ol, and matrix A may be

20

25

35

40

45

55

16

extended by the extended identity matrix ol, as shown. Alter-
natively, the inputs may be kept separate, i.e., the matrix A
may not be extended by the extended identity matrix ol.

Then, as indicated in 804, the MGS (QR decomposition)
procedure may be performed on matrix A (not the extended
matrix A), i.e., where the coefficients or factors r; and r,; are
applied to matrix A as described above. Matrices Q and oR™*
may be derived or extracted per 806, and oR~" may be scaled
to remove the scaling factor o, thereby producing matrix R™,
as indicated in 812.

Based on matrix Q from 806, Hermitian conjugate trans-
pose (matrix) Q* may be computed from Q and multiplied by
vector b, as shown in 808, and in 810, inverse matrix R™! may
be multiplied by the product (Q*b), resulting in solution
vector X.

Thus, embodiments of the circuit and techniques disclosed
herein may operate to efficiently (via the MGS procedure)
solve systems of linear equations.

In a further embodiment, in being configured to solve the
system of linear equations specified by the expression Ax=b,
the circuit may be inherently configured to determine an
estimated signal s_, with a minimum mean square error
(MMSE) with respect to an observed signal y on a noisy
channel. FIG. 9 is a high level flowchart of a method for
estimating a signal transmitting on a noisy channel, according
to one embodiment. Note the similarities between the flow-
chart of FIG. 8 and that of FIG. 9, which reflect the fact that
the same circuit is capable of performing both methods via
different input.

Thus, in some embodiments, the method may further
include receiving a third set of inputs at the input, where the
third set of inputs includes a channel matrix H and in embodi-
ments where scaling is utilized, the scaling factor o, as shown
being provided to block 902 of FIG. 9. As 902 also indicates,
the identity matrix may be scaled by the scaling factor o,
thereby generating a scaled identity matrix ol, and the chan-
nel matrix H may be extended with the scaled identity matrix
ol, thereby generating extended channel matrix B. In 904,
matrix Q may then be computed (via the specified set of
hardware components (or circuit portion) dedicated to com-
puting matrix Q), based on the extended matrix B using the
MGS process.

In 906, matrix Q may be partitioned into constituent matri-
ces Q, and matrix Q,, i.e., matrix Q may be divided or sepa-
rated into matrix Q, and matrix Q,, which may then be stored,
e.g., in a memory or register of the circuit. In 912, matrix Q,
may be scaled by scaling factor o, thereby computing Q,/c,
as shown.

In 908, based on matrix Q, from 906, Hermitian conjugate
transpose (matrix) Q, * may be computed from Q, and mul-
tiplied by vector y (observed signal), as shown in 908, and in
910, scaled matrix Q,/0 may be multiplied by the product
(Q™y), resulting in estimated signal S_,,. In other words, the
estimated signal s, may be computed based onQ,, Q,/0,and
the observed signal y. The estimated signal s, may be output
and/or stored, e.g., in a memory or register of the circuit.

Note that both solution processes (solving linear equations,
estimating signal) involve R~ in a similar way and may be
implemented using a unified architecture in hardware, e.g., on
an FPGA. Moreover, as also described above, the same imple-
mentation scheme can also be applied to compute the inverse
of a matrix for some application. Thus, the MGS procedure
may be used in any of various ways by embodiments of the
circuit disclosed herein to efficiently perform QR decompo-
sition and related matrix computations.

As discussed above, QR decomposition generally involves
normalization and orthogonalization processes which are



US 9,201,849 B2

17

applied iteratively to column vectors of a matrix, e.g., matrix
A. In some embodiments, a systolic array may be used to
perform the MGS procedure, i.e., may be implemented by
embodiments of the circuit disclosed herein. As is known, a
systolic array is an array of matrix-like rows of data process-
ing units (DPUs), referred to as cells, which can be used to
parallelize computations. More specifically, a DPU is similar
to a CPU (central processing unit) but generally lacks a pro-
gram counter, because the DPU activates upon receipt of
input data. In a systolic array, which may be rectangular in
arrangement, data may flow synchronously through the array,
where at each step or cycle, each cell receives data from one
or more of its neighbor cells (e.g., North and East neighbor
cells), computes a value, and outputs the value in the cells
respectively opposite (e.g., South and West neighbor cells).
Systolic arrays are often used for efficient matrix multiplica-
tion, and thus may be suitable for implementations of the
techniques disclosed herein. DPUs may be referred to as
process elements (PEs).

For example, in one embodiment, a systolic array may be
used or implemented in which two kinds of process elements
(PE) are utilized; one type for normalization and one type for
orthogonalization. As cascaded vectors pass through a nor-
malization PE, the first vector get normalized and rest of the
vectors just pass through. The orthogonalization PE uses the
last normalized vector to perform orthogonalization process
for sub sequential vectors. FIG. 10 illustrates normalization
and orthogonalization processes for an i vector which may
be computed as part of the techniques disclosed herein,
according to one embodiment. As shown, matrix elements for
the i” vector (e.g., coefficients): ¥ ,_,,q,_, ... T 3o - -» L ss
a,,,, 1, a, maybeprovided as inputto a normalization process
N,, which may produce normalized elementsr™,,q, ..., q, -

., 1,1, a,,,, as output. This output may then be provided to
orthogonalization process O, as input, as shown. The orthogo-
nalization process O,, may use these inputs to produce
orthogonal outputs 1™, q, .. ., Qo - - - » Lip1s 3y y-

Note that particular implementations in hardware may be
chosen based on performance and/or footprint requirements.
For example, loops may be “unrolled”, subprocesses may be
pipelined, and so forth, to trade-off between speed and circuit
size or footprint. Thus, for example, the basic elements
described in FIG. 10 may be used or implemented in various
ways to meet different requirements. Said another say, differ-
ent architectures or implementations of a systolic array may
be constructed to accommodate different throughput require-
ments. This flexibility may be important for some applica-
tions. For example, one can save FPGA resources (decrease
the footprint) when real time throughput requirements are not
high.

FIGS. 11A and 11B respectively illustrate an Nx4 sequen-
tial (non-parallel) QR decomposition process and a corre-
sponding exemplary graphical program implementation,
according to one embodiment. Note that the graphical pro-
gram shown was developed in the LabVIEW FPGA develop-
ment system provided by National Instruments Corporation,
and is compilable for and deployable to an FPGA. As may be
seen, this sequential implementation saves FPGA (or more
generally, circuit) footprint at the expense of speed. The fol-
lowing table illustrates exemplary resource use and perfor-
mance for this implementation, according to one embodiment
directed to a 4x4 real-valued matrix, with the core compiled
with a specific output option; specifically, the core was com-
piled at 280 MHz on a Xilinx Virtex 5 sx95t —1 device, and
Table 1 lists approximate resource utilization of the device for
various applications.

10

15

20

25

30

35

40

45

50

55

60

65

TABLE 1
Latency Latency
DSP48s  registers LUTs (cycles) (time, ps)
QR 38 2444(4.2%)  3109(5.2%) 114 0.4
Q,R,R7! 41 2672(4.5%) 3421(5.8%) 103 0.36
MMSE 37 2041(3.5%) 2464(4.2%) 131 0.46

FIGS. 12A and 12B respectively illustrate an Nx4 semi-
parallel QR decomposition process and a corresponding
graphical program implementation, according to one
embodiment, and FIGS. 13A and 13B respectively illustrate
an Nx4 full parallel QR decomposition process and a corre-
sponding graphical program implementation, according to
one embodiment.

Clearly, as the circuit implements more parallelism, more
circuit resources are required, but the throughput of the circuit
is increased. Thus, the circuit may be implemented in difter-
ent ways depending on the particular requirements of an
application. Thus, in some embodiments, the circuit may
implement a systolic array to perform the MGS process.
Moreover, in various embodiments, the systolic array may be
implemented to perform the MGS process based on one or
more of a specified throughput requirement or a specified
footprint requirement.

Additionally, as discussed above, in some embodiments,
the circuit may include or be implemented by an application
specific integrated circuit (ASIC), and in other embodiments,
may include or be implemented by a programmable hardware
element, such as an FPGA.

As exemplified by FIGS. 11B, 12B, and 13B, in some
embodiments, the above techniques or functionality may be
specified by graphical programs, e.g., LabVIEW programs,
although any other type of program may be used as desired.

In some embodiments where the functionality is specified
by a graphical program, the graphical program may be cre-
ated on the computer system 82 (or on a different computer
system). The graphical program may be created or assembled
by the user arranging on a display a plurality of nodes or icons
and then interconnecting the nodes to create the graphical
program. In response to the user assembling the graphical
program, data structures may be created and stored which
represent the graphical program. The nodes may be intercon-
nected in one or more of a data flow, control flow, or execution
flow format. The graphical program may thus comprise a
plurality of interconnected nodes or icons which visually
indicates the functionality of the program. As noted above,
the graphical program may comprise a block diagram and
may also include a user interface portion or front panel por-
tion. Where the graphical program includes a user interface
portion, the user may optionally assemble the user interface
on the display. As one example, the user may use the Lab-
VIEW graphical programming development environment to
create the graphical program.

In an alternate embodiment, the graphical program may be
created by the user creating or specifying a prototype, fol-
lowed by automatic or programmatic creation of the graphical
program from the prototype. This functionality is described in
U.S. patent application Ser. No. 09/587,682 titled “System
and Method for Automatically Generating a Graphical Pro-
gram to Perform an Image Processing Algorithm”, which is
hereby incorporated by reference in its entirety as though
fully and completely set forth herein. The graphical program
may be created in other manners, either by the user or pro-
grammatically, as desired. The graphical program may imple-



US 9,201,849 B2

19

ment a measurement or analysis or processing function that is
desired to be performed by the instrument.

In a further embodiment, a software tool may be provided
whereby a user may specify the above described functional-
ity, and the software tool may automatically generate a pro-
gram, e.g., a graphical program, that encodes or implements
the functionality targeted for deployment to hardware. For
example, in one embodiment, a program development envi-
ronment may be provided that allows a user to select a func-
tion for inclusion in a program, and provide input configuring
the function for a specific QR decomposition application. The
development environment (or more generally, the software
tool) may then automatically generate a program (e.g., a
subprogram) that implements the specified functionality.

In some embodiments, the development environment may
be a graphical development environment, e.g., similar to, or a
version of, LabVIEW FPGA™, provided by National Instru-
ments Corporation, that has been adapted appropriately to
implement embodiments of the techniques disclosed herein.
For example, in one embodiment, a node may be provided,
e.g., in a palette, which the user may select for inclusion in a
graphical program, e.g., the user may drag and drop the node
into the graphical program. For convenience, the node may be
referred to herein as a QR node, although any other name or
label may be used as desired. In LabVIEW parlance, the QR
node may be a subVI, which is a callable graphical program
node representing another graphical program, where the
other graphical program implements the desired functionality
represented by the node/subVI. In other words, the term
“subVI” is a graphical node that corresponds to a textual
subprogram that is callable by a program. The user may
configure the QR node for the particular application in mind,
e.g., by invoking a GUI, such as by right clicking on the node,
orany other mechanism as desired, and providing input speci-
fying various attributes or parameters for the desired func-
tionality, e.g., array or matrix size(s) or dimensionality, scal-
ing, throughput requirements, e.g., degree of parallelism, and
so forth, as appropriate. Once the node is configured, the
software tool, e.g., the graphical development environment,
or a separate tool, e.g., configured to operate in conjunction
with the environment, may automatically generate a graphi-
cal program in accordance with the user-specified configura-
tion.

In another embodiment, the software tool may be or
include a wizard that may present a series of dialogs or fields
to receive user input specifying the desired functionality, e.g.,
array size(s) or dimensionality, scaling, etc., and the program
(e.g., textual or graphical) may be generated accordingly.

Example graphical programs implementing such function-
ality are described above with respect to FIGS. 11B, 12B, and
13B, although it should be noted that these programs are
exemplary only.

The generated (possibly graphical) program may be used
to generate (e.g., may be converted or compiled to produce) a
hardware configuration program or netlist or circuit design/
layout program or file, which may then be used to implement
embodiments of the techniques disclosed herein in hardware,
i.e., in or on a circuit, such as a programmable hardware
element, e.g., an FPGA, or an ASIC.

It should be noted that in various embodiments, any of the
techniques or elements described herein may be used in any
combinations desired.

Attached hereto is an Appendix comprising a white paper
titled “A Novel Architecture for QR Decomposition” by Yong
Rao and Ian Wong, of National Instruments Corporation,
which is hereby incorporated by reference in its entirety as
though fully and completely set forth herein.

10

15

20

25

30

35

40

45

50

55

60

65

20

Although the embodiments above have been described in
considerable detail, numerous variations and modifications
will become apparent to those skilled in the art once the above
disclosure is fully appreciated. It is intended that the follow-
ing claims be interpreted to embrace all such variations and
modifications.
We claim:
1. A circuit, configured to implement a QR decomposition
of' a matrix A into two matrices Q and R using a Modified
Gram Schmidt (MGS) process, wherein Q represents an
orthonormal basis that spans a column space of A, and
wherein R is a triangular matrix, the circuit comprising:
an input;
a specified set of hardware components, coupled to the
input, wherein the specified set of hardware components
are dedicated to computing matrix Q; and
an output;
wherein the circuit is configured to:
receive a first set of inputs at the input, wherein the first
set of inputs includes the matrix A and a scaling factor
o

compute matrix Q via the specified set of hardware
components dedicated to computing matrix Q, based
on the first set of inputs using the MGS process;

scale the identity matrix by the scaling factor o, thereby
generating scaled identity matrix ol

receive a second set of inputs to the specified set of
hardware components dedicated to computing matrix
Q, wherein the second set of inputs is different from
the first set of inputs, wherein the second set of inputs
comprises the scaled identity matrix;

compute scaled matrix oR™' via the specified set of
hardware components dedicated to computing matrix
Q, based on the second set of inputs using the MGS
process;

unscale the scaled matrix oR™', thereby computing
matrix R™, wherein matrix R™' is the inverse of
matrix R;

output the matrix Q and/or matrix R™! via the output; and

use the matrix Q and/or matrix R™* to perform signal
estimation on a noisy channel.

2. The circuit of claim 1, wherein the circuit is further
configured to:

compute matrix A~! based on the matrix R™* and the matrix
Q.

3. The circuit of claim 1, wherein the circuit is further
configured to solve a system of linear equations specified by
the expression Ax=b based on the matrix R™*, the matrix Q,
and vector b, and wherein x is a vector.

4. The circuit of claim 3, wherein in being configured to
solve the system of linear equations specified by the expres-
sion Ax=b, the circuit is inherently configured to determine an
estimated signal s_, with a minimum mean square error
(MMSE) with respect to an observed signal y on a noisy
channel, wherein to determine the estimated signal s, the
circuit is configured to:

receive a third set of inputs at the input, wherein the third
set of inputs includes a channel matrix H and the scaling
factor o;

scale the identity matrix by the scaling factor o, thereby
generating a scaled identity matrix ol;

extend the channel matrix H with the scaled identity matrix
ol, thereby generating extended channel matrix B;

compute matrix Q via the specified set of hardware com-
ponents dedicated to computing matrix Q, based on the
extended matrix B using the MGS process;

divide matrix Q into matrix Q, and matrix Q,;

est



US 9,201,849 B2

21

store the matrix Q, and matrix Q,;

scale matrix Q, by o, thereby computing Q,/o; and

compute the estimated signal s_,, based on Q,, Q,/0, and

the observed signal y; and
output the estimated signal s_,.
5. The circuit of claim 1, wherein the circuit comprises an
application specific integrated circuit (ASIC).
6. The circuit of claim 1, wherein the circuit comprises a
programmable hardware element.
7. The circuit of claim 1, wherein the circuit implements a
systolic array to perform the MGS process.
8. The circuit of claim 7, wherein the systolic array is
implemented to perform the MGS process based on one or
more of:
a specified throughput requirement; or
a specified footprint requirement.
9. A method, comprising:
providing a circuit, wherein the circuit is configured to
implement a QR decomposition of a matrix A into two
matrices Q and R using a Modified Gram Schmidt
(MGS) process, wherein Q represents an orthonormal
basis that spans a column space of A, wherein R is a
triangular matrix, and wherein the circuit comprises a
specified set of hardware components dedicated to com-
puting matrix Q;

providing a first set of inputs to the circuit, wherein the first
set of inputs includes the matrix A and a scaling factor o;

computing matrix Q via the specified set of hardware com-
ponents dedicated to computing matrix Q, based on the
first set of inputs using the MGS process;
storing the matrix Q;
scaling the identity matrix by the scaling factor o, thereby
generating scaled identity matrix ol;

providing a second set of inputs to the specified set of
hardware components dedicated to computing matrix Q,
wherein the second set of inputs is different from the first
set of inputs, wherein the second set of inputs comprises
the scaled identity matrix;
computing scaled matrix oR ™' via the specified set ofhard-
ware components dedicated to computing matrix Q,
based on the second set of inputs using the MGS process;

unscaling the scaled matrix oR™', thereby computing
matrix R™%, wherein matrix R~ is the inverse of matrix
R;

storing the matrix R™!; and

using the matrix Q and/or matrix R~ to perform signal

estimation on a noisy channel.

10. The method of claim 9, wherein the circuit is further
configured to compute matrix A~" based on the matrix R™*
and the matrix Q, the method further comprising:

computing, via the circuit, matrix A~* based on the matrix

R~! and the matrix Q.

11. The method of claim 9, wherein the circuit is further
configured to solve a system of linear equations specified by
the expression Ax=b, wherein x and b are respective vectors,
the method further comprising:

solving, via the circuit, the system of linear equations

specified by the expression Ax=b to determine x, based
on matrix R, the matrix Q, and vector b, and wherein x
is a vector.

12. The method of claim 11, wherein in being configured to
solve the system of linear equations specified by the expres-
sion Ax=b, the circuit is inherently configured to determine an
estimated signal s_, with a minimum mean square error
(MMSE) with respect to an observed signal y on a noisy
channel, the method further comprising:

est

10

15

20

25

30

35

40

45

50

55

60

65

22

receiving a third set of inputs at the input, wherein the third
set of inputs includes a channel matrix H and the scaling
factor o;
scaling the identity matrix by the scaling factor o, thereby
generating a scaled identity matrix ol;
extending the channel matrix H with the scaled identity
matrix ol, thereby generating extended channel matrix
B;
computing matrix Q via the specified set of hardware com-
ponents dedicated to computing matrix Q, based on the
extended matrix B using the MGS process;
dividing matrix Q into matrix Q, and matrix Q,;
storing the matrix QQ, and matrix Q,;
scaling matrix Q, by o, thereby computing Q,/o; and
computing the estimated signal s, based on Q,, Q,/0, and
the observed signal y; and
outputting the estimated signal s_,,.
13. The method of claim 9, wherein the circuit comprises
an application specific integrated circuit (ASIC).
14. The method of claim 9, wherein the circuit comprises a
programmable hardware element.
15. The method of claim 9, wherein the circuit implements
a systolic array to perform the MGS process.
16. The method of claim 15, wherein the systolic array is
implemented to perform the MGS process based on one or
more of:
a specified throughput requirement; or
a specified footprint requirement.
17. A circuit, configured to implement a QR decomposition
of' a matrix A into two matrices Q and R using a Modified
Gram Schmidt (MGS) process, wherein Q represents an
orthonormal basis that spans a column space of A, and
wherein R is a triangular matrix, the circuit comprising:
an input;
a specified set of hardware components, coupled to the
input, wherein the specified set of hardware components
are dedicated to computing matrix Q; and
an output;
wherein the circuit is configured to:
receive a first set of inputs at the input, wherein the first
set of inputs includes the matrix A;

compute matrix Q via the specified set of hardware
components dedicated to computing matrix Q, based
on the first set of inputs using the MGS process;

receive a second set of inputs to the specified set of
hardware components dedicated to computing matrix
Q, wherein the second set of inputs is different from
the first set of inputs, wherein the second set of inputs
comprises the identity matrix;

compute matrix R~ via the specified set of hardware
components dedicated to computing matrix Q, based
on the second set of inputs using the MGS process,
wherein matrix R™! is the inverse of matrix R;

output the matrix Q and/or matrix R~! via the output; and

use the matrix Q and/or matrix R™* to perform signal
estimation on a noisy channel.

18. The circuit of claim 17, wherein the circuit is further
configured to:

compute matrix A~ based on the matrix R™* and the matrix

est

19. The circuit of claim 17, wherein the circuit is further
configured to solve a system of linear equations specified by
the expression Ax=b based on the matrix R™", the matrix Q,
and vector b, and wherein x is a vector.

20. The circuit of claim 19, wherein in being configured to
solve the system of linear equations specified by the expres-
sion Ax=b, the circuit is inherently configured to determine an



US 9,201,849 B2

23

estimated signal s_, with a minimum mean square error
(MMSE) with respect to an observed signal y on a noisy
channel, wherein to determine the estimated signal s, the
circuit is configured to:
receive a third set of inputs at the input, wherein the third
set of inputs includes a channel matrix H and a scaling
factor o;
scale the identity matrix by the scaling factor o, thereby
generating a scaled identity matrix ol;
extend the channel matrix H with the scaled identity matrix
ol, thereby generating extended channel matrix B;
compute matrix Q via the specified set of hardware com-
ponents dedicated to computing matrix Q, based on the
extended matrix B using the MGS process;
divide matrix Q into matrix Q, and matrix Q,;
store the matrix Q, and matrix Q,;
scale matrix Q, by o, thereby computing Q,/0; and
compute the estimated signal s_,, based on Q,, Q,/0, and
the observed signal y; and
output the estimated signal s_,.
21. A method, comprising:
providing a circuit, wherein the circuit is configured to
implement a QR decomposition of a matrix A into two
matrices Q and R using a Modified Gram Schmidt
(MGS) process, wherein Q represents an orthonormal
basis that spans a column space of A, wherein R is a
triangular matrix, and wherein the circuit comprises a
specified set of hardware components dedicated to com-
puting matrix Q;
providing a first set of inputs to the circuit, wherein the first
set of inputs includes the matrix A;
computing matrix Q via the specified set of hardware com-
ponents dedicated to computing matrix Q, based on the
first set of inputs using the MGS process;
storing the matrix Q;
providing a second set of inputs to the specified set of
hardware components dedicated to computing matrix Q,
wherein the second set of inputs is different from the first
set of inputs, wherein the second set of inputs comprises
the identity matrix;
computing matrix R~ via the specified set of hardware
components dedicated to computing matrix Q, based on

est

5

10

15

20

25

30

35

40

24

the second set of inputs using the MGS process, wherein
matrix R™! is the inverse of matrix R;
storing the matrix R™!; and

use the matrix Q and/or matrix R™* to perform signal esti-

mation on a noisy channel.

22. The method of claim 21, wherein the circuit is further
configured to compute matrix A~' based on the matrix R™*
and the matrix Q, the method further comprising:

computing, via the circuit, matrix A~' based on the matrix

R~! and the matrix Q.

23. The method of claim 21, wherein the circuit is further
configured to solve a system of linear equations specified by
the expression Ax=b, wherein x and b are respective vectors,
the method further comprising:

solving, via the circuit, the system of linear equations

specified by the expression Ax=b to determine x, based
on matrix R, the matrix Q, and vector b, and wherein x
is a vector.
24. The method of claim 23, wherein in being configured to
solve the system of linear equations specified by the expres-
sion Ax=b, the circuit is inherently configured to determine an
estimated signal s_, with a minimum mean square error
(MMSE) with respect to an observed signal y on a noisy
channel, the method further comprising:
receiving a third set of inputs at the input, wherein the third
set of inputs includes a channel matrix H and a scaling
factor o;

scaling the identity matrix by the scaling factor o, thereby
generating a scaled identity matrix ol;

extending the channel matrix H with the scaled identity
matrix o, thereby generating extended channel matrix B;

computing matrix Q via the specified set of hardware com-
ponents dedicated to computing matrix Q, based on the
extended matrix B using the MGS process;

dividing matrix Q into matrix Q, and matrix Q,;

storing the matrix QQ, and matrix Q,;

scaling matrix Q, by o, thereby computing Q,/o; and

computing the estimated signal s, based on Q, , Q,/0, and

the observed signal y; and

outputting the estimated signal s_,,.

est

#* #* #* #* #*



